CSCI 7000 Fall 2023: Problems on Fibonacci Series

Joshua A. Grochow

August 31, 2023

To work on during class:

The Fibonacci sequence is defined by $F_{0}=0, F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$ for $n \geq 0$; its first few terms are thus $0,1,1,2,3,5,8,13$.

1. Prove that $F_{n} \leq 2^{n}$ for all n in as many different ways as possible, including an injective proof.
2. Prove that $F_{n} \gtrsim c(\sqrt{2})^{n}$ for some $c>0$ and for all $n \geq 1$ in as many different ways as possible, including an injective proof.
3. Try to generalize your proofs in (1) to get tighter upper bounds; try to generalize your proofs in (2) to get tighter lower bounds. Can you find the limit of these methods?
4. For all $n \geq 0$, we have

$$
\left[\begin{array}{l}
F_{n+2} \\
F_{n+1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
F_{n+1} \\
F_{n}
\end{array}\right]
$$

Use the eigevalues of this matrix to determine the asymptotic growth rate of the Fibonacci sequence.

